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Abstract-The integral method is employed to investigate some effects of compressibility, heat transfer, 
mass transfer and streamwise pressure gradient in boundary layers over slender bodies of revolution, 
where the boundary layer thickness is not necessarily small compared to the body radius. The results 
for zero pressure gradient without mass transfer are compared with those of other investigators in the 
low-speed case and in the adiabatic-surface case. These flows generally produce non-similar profiles. 
A special case of zero pressure gradient with mass transfer, which yields a similar solution, is solved. 

special conditions which produce For flows with and without pressure gradients and mass transfer, 
similar profiles are derived. 

NOMENCLATURE a*, 

Q, body radius, may be function of X; 
A, B, C, D, defined by equation (7b); 6 rn, 

2710 
c f, skin friction coefficient, cf = -2; 

P&C A, 

3 
defined by equation (5) ; 4 

J,’ 
defined by equation (6~); 
injection parameter [equation (5)]; fly 

m, transformed normal co-ordinate 2, 
[equation (4a)f; i*V 

N, transformed normal co-ordinate V, 
[equation (4b)]; P? 

P pressure ; 7, 
ML, Ed;$ds number based on body Subscripts 

e. 
s, transfirmed streamwise co- 

ordinate [equation (5)]; 
M’, 

% u, streamwise and normal velocity x, y, N, 

component; 
x, YI streamwise and normal co- Superscripts 

ordinate; -7 
6, boundary-payer thickness; 
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displacement thickness, 
6* = f;(l - ,.%}ydy; 

transformed bo~dary-layer thick- 
ness [equation (4a)]; 
defined by equation (7b); 
momentum thickness, 

B = J; $i(l - zi)ydv; 
shape factor [equation (6c)f; 
defirted by equation (8b); 
absolute viscosity; 
kinematic viscosity, Y = p/p; 

density; 
shear stress. 

conditions outside boundary layer ; 
refer to conditions at wall; 
denotes partial differentiation with 
respect to indicated variable. 

denotes dimensionless quantities 
unless otherwise noted. 

~“lu,p=P,I”=I. 
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for which the boundary-layer thickness S is not 
small compared to the body radius a. An 
integral method analysis is utilized to investigate 
both similar and non-similar solutions. Some 
effects of surface heat transfer, surface mass 
transfer and streamwise pressure gradients are 
taken into account. 

Work on various aspects of this subject has 
been done by Seban and Bond [I], Kelly [2], 
Mark [3], Glauert and Lighthill [4], Probstein 
and Elliot [5], Pai [6], Yasuhara [7]. Bourne and 
Davies [8], and Bourne et al. [9]. 

Their work has not included effects of mass 
transfer or pressure gradients. The heat transfer 
calculations have been confined to incompres- 
sible flow [l, 2, 8, 91 or to first-order departures 
from thin boundary layers [1, 2, 51. Seban and 
Bond [l] and Kelly [2] demonstrated that the 
usual solutions for thin boundary layers begin to 
incur noticeable errors (underestimates of about 
7 per cent in skin-friction coefficient) when 
S/a N 0.16. They used series expansions in a 
parameter proportional to (S/a)” to extend the 
solutions to cases of moderate thickness, with 
S/a < 1.6, approximately. The solutions in this 
range are generally non-similar. They obtained 
temperature and heat-transfer solutions in this 
range. 

Probstein and Elliot [5] used analogous series 
procedures to treat the compressible case for 
moderately thick boundary layers (S/a < 1) 
over isothermal or insulated cylinders and cones. 
Yasuhara [7] extended the analysis to deal with 
bodies of arbitrary shape, again for S/a < 1. 

Mark [3] demonstrated that in incompressible 
flow a similar solution can be derived for the case 
of a paraboloid (a2 - x) for any magnitude of 
thickness, provided that streamwise pressure 
gradients are neglected. Mark’s justification for 
neglecting streamwise pressure gradients was 
based on a consideration of pressure gradients 
over paraboloids in inviscid flow, i.e. self- 
induced pressure gradients. For slender bodies, 
these are generally small away from the nose 
region. He did not consider the possible presence 
of externally caused pressure gradients, such as 
those due to the impingement of shocks and 
expansions or due to the immersion of the body 
in a channel. 

Mark’s governing differential equation for 

isobaric flow over a paraboloid was of the form 
3” + 2[( 1 + fin) {“I’ = 0, with boundary con- 
ditions j(0) =,p’(O) == 0, ,{‘(a) = 1, where 
.f’@) is the usual velocity ratio, fi is the similarity 
variable and /3 is a constant related to the scale 
of the body (a”/s ~~ 2v/u,f12). For p 4 I, the 
Blasius equation is obtained. For /3 9 1, 
signifying very thick boundary layers, the 
similarity equation can be manipulated to 
produce an equation of the form (,f’+ l),f’” I- 

nJ‘ “I = 0, with boundary conditions,f’(1/2fi2) 
f’(l/2fi2) :== 0, ,f’(a) = 1, where dependence 
upon /3 appears in the boundary conditions. 

Glauert and Lighthill [4] independently 
obtained the latter differential equation and 
boundary conditions for a different case, namely, 
the very thick boundary I.ayer over a cylinder 
(for which LI ==- constant and /3” y x, where x is 
the streamwise co-ordinate). The dependence 
on x of ,R. which appears in the boundary 
conditions. precludes the obtaining of strict. 
similar solutions in this case. Moreover, Glauert 
and Lighthill pointed out that the logarithmic 
variation of ,f” for small values of n does not 
permit the transfer of the point of application 
of the inner boundary condition from n 1 IV2 
to n = 0. On this basis they did not attempt a 
solution of the cited equation, but rather started 
the analysis afresh, with a series expansion in 
inverse powers of /I?. They simply noted that the 
similar solution for paraboloids (/I ~~~ constant) 
could be obtained by straightforward numerical 
integration. Moreover, they pointed out that 
their expansion procedure for obtaining non- 
similar solutions for cylinders with ,5 /3(x) 
could be extended readily to deal with power-law 
bodies (u - x”‘, where tn is a constant). In fact 
the solutions up to terms of order I/p” are the 
same for power-law bodies as for cylinders 
(nz = 0). 

On the other hand, Mark, following a proce- 
dure suggested by Stewartson, carried out a 
more straightforward type of iterative solution 
for the second differential equation above. 
retaining the dependence of the boundary 
conditions on /3, which is constant for the para- 
boloids he treated. As noted previously, the 
solutions are strictly similar when /3 is constant. 
Mark also obtained a simplified solution of 
Oseen type by linearizing the convective terms; 
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this is equivalent to replacing f by IZ in the 
bracketed term of the cited differential equation. 
Since /3 appears explicitly in the solution, even 
for /3 9 1, the solution could have been carried 
out as readily by the use of the first differential 
equation above, i.e. the one forf(Z). 

Both Mark [3] and Glauert and Lighthill [4] 
carried out integral-method analyses for the 
condition of zero streamwise pressure gradient 
to cover the non-similar solutions in the inter- 
mediate-thickness range. This range may be 
defined roughly as 1 < s/a < 100. Glauert and 
Lighthill apparently did not know of Mark’s 
work, which was not widely available; they dealt 
only with isobaric incompressible flow. Mark 
employed the integral method for both incom- 
pressible and compressible adiabatic flow, noting 
the applicability of the well-known Crocco 
energy-integrals for a Prandtl number of unity. 
He tested the integral-method solution by a 
comparison with the exact solutions for the 
paraboloid in incompressible flow, and by 
comparisons with the series solutions for the 
limiting cases of moderate and very large thick- 
nesses in incompressible flow over cylinders. 
Glauert and Lighthill [4] also employed the 
latter test. The integral method performed 
satisfactorily on the basis of these comparisons. 

Bourne and Davies [8] carried out the tem- 
perature solutions in incompressible flow corre- 
sponding to the asymptotic case of extremely 
large thicknesses analyzed by Glauert and 
Lighthill [4]. In a further paper, Bourne et al. [9] 
carried out the integral.-method temperature 
analysis in the intermediate-thickness range for 
incompressible flow, corresponding to the 
intermediate-range velocity solutions of Glauert 
and Lighthill [4]. They did not make use of the 
energy-integral for a Prandtl number of unity or 
of the Reynolds analogy which is implied by the 
energy integral. 

The present integral-method analysis is similar 
in approach to those cited above. However, it 
includes surface heat transfer generally and 
introduces the elements of surface mass transfer 
and streamwise pressure gradient. The velocity 
profile assumed for U/U, contains logarithmic 
terms and polynomial terms; both types of 
function are required for a unified treatment of 
all cases. 

In the pressure-gradient case, further modi- 
fications in the profile are required if no re- 
striction is to be placed on the magnitude of the 
favorable gradients which can be treated. This 
problem is not peculiar to thick boundary layers 
but arises also in the analysis of thin boundary 
layers with strong, favorable pressure gradients. 
It stems from the fact that polynomial profiles 
employed in the integral method yield velocity 
ratios u/u, greater than unity (“popped” 
profiles) under strong, favorable pressure gradi- 
ents even in incompressible, isothermal flow; 
this result cannot be justified on physical 
grounds. Therefore, the practice has been to 
limit the magnitude of the pressure gradients 
which are treated with polynomial profiles (see, 
for example, Schlichting [lo]) or to employ 
profiles which preclude “popping” in incom- 
pressible, isothermal flow. The latter procedure 
is discussed more fully by Steiger [l l] who 
utilized a power-law type of profile for this 
purpose. In this paper the calculations are made 
with the log-type of velocity profile. In [12], 
which contains additional analysis of the 
pressure-gradient case, a few check calculations 
are made with the power-law type of profile. 
The pressure gradients for which the log-type 
profiles are used are limited to those which do 
not produce popped profiles. 

From a technical standpoint, interest in thick 
boundary layers has increased because of the 
decreased Reynolds numbers encountered in 
high-altitude flight and because mass-addition 
over bodies tends to engender significant 
boundary-layer thickening. In fact, the coupling 
of these two conditions can be envisaged 
readily. 

For the constant-wall-temperature and zero- 
pressure-gradient case, the Prandtl number is 
assumed equal to unity, which permits the use 
of the Crocco integral of the energy equation, 
namely : H = a + bu: where a and b are 
constants. 

It is not the intention here to present an 
exhaustive parametric study of mass-transfer 
and pressure-gradient effects, but rather to 
set up the procedure for dealing with these 
effects and to examine some instructive special 
cases which do not require very lengthy calcu- 
lations. 
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ANALYSIS 

The following equations of boundary-layer 
type are assumed to govern the laminar, viscous, 
axially symmetric flow along a slender body 
over which the thickness S of the viscous layer 
is not necessarily small compared to the body 
radius a(x), (see Fig. 1): 

FK,. I. Schematic of axisymmetric flow along a 
slender body, with and without injection. 

Continuity : 

(PKVL + (PV>!, = 0. 

Momentum : 

(1) 

(PU2Y)Lz + (PUVY)Y = (PY%)Y - Yl’r. (2) 

The boundary conditions utilized in the inte- 
gral method are 

at y .~= 0: 

ll == 0, 1‘ .~- I’,,, ypcu,, = (~4~ - YP.~ (34 

at y-- 6: 
(3b) 

By operating on equations (1) and (2), and 
introducing a modified Dorodnitsyn trans- 
formation as follows : 

py dy -= dnz, m = c,sydy 

6,N == nt, ,sy dy == S,,, dN, 

(4a) 

the following integral differential equation is 
obtained : 

d0 
dd + B$ln (ploa2u~ + 6* 

The appropriate boundary conditions in the 
transformed plane are given by 

N = 0: U = 0, t; z &,, 
&N + zin;x $ fl = 0 at J’ -= u (6a) 

N = 1.0: U = 1, 

where 

The following velocity profile assumed in 
terms of N is of the type assumed by Mark [3] 
and Glauert and Lighthill [4]. It has the advan- 
tage of accuracy in the important region near 
the surface, and is of the type which has yielded 
satisfactory results over the entire thickness 
range in the test cases [3, 41 in isobaric. in- 
compressible flow previously discussed in the 
Introduction. 

U = A In (1 + CN) + BN’ + CN3 + DNJ (7a) 

where 

A := (12 + A)(1 + @,/A 

B = - A/2 

- CA = 4G(4G + 3) - A[8(1 + G)2 
In (1 + G) - G(6G + 5)] 

DA = 3G(3G + 2) - A[3(1 + @2 

In (1 + G) - z (5G t 411 

A = 12(1 + G)2 
In (1 + e) - G(7e f 6). (7b) 

Fig. 2 illustrates typical profiles for certain 
values of A and G. 
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For thin boundary layers G--f 0, since 
G--f 0, whereas for thick boundary layers 
G + 0 when J--f 2. In both cases (7a) is reduced 
to 

ai==2N-2N3+N4 
-!- A(N - 3N2 + 3N3 - N4) (8a) 

where 

ii=+++;+;. @b) 

This reduced profile (8a) is of the same form 
as that obtained with a fourth-degree-polynomial 
profile for thin boundary layers with pressure 
gradients (see [lo], p. 208)._ However, the 
augmented shape parameter A which appears 
here is defined differently from the usual shape 
parameter, when linear terms in G are retained. 
When ii > 12, values of U/U, > 1 appear in the 
profile. As discussed in the Introduction, values 
of 2 > 12 will not be considered here. It is seen 
that the presence of G > 0 in (8a) will increase 
the tendency of the profile to generate values of 
u/u, > 1 for a given (1. On the other hand, 
values of G > 0 will tend to reduce the tendency 
toward separation for a given (1; separation 
occurs when A = - 12. 

The case of flow with zero pressure gradient, 
but including surface mass transfer, will now be 
considered. 

Protileteq.7) A CNNw Z 
I -12 0 Independent of c? 

2 0 2.00 0 
3 0 5.34 IO.0 
4 0 158.0 10000 

ii 

FIG. 2. Velocity distribution in the boundary layer at 
several longitudinal stations, along a slender body. 

Zero pressure gradient with mass transfer 
For these conditions (u, = constant, (1 = 0) 

the momentum integral, equation (5), is reduced 
to 

2iilvw 
~+fI~ln(p,az)-G+J. (9) 

Similar velocity profiles ii = d(N) are obtained 
under the condition that G = constant. Inspec- 
tion of (9) shows that this condition is fulfilled 
if 

G = 2S,/p,a2 = const. (lOa) 

J = c,alv, = const. (lob) 

b = d”, In (pwa2) = const. (1Oc) 

It is of interest to derive the mathematically 
exact similar solutions corresponding to (10) 
directly from the differential equation (2).t 

Integration of (10~) leads to the condition 

where subscript zero denotes values at an initial 
station (x = 0). For isothermal surfaces, (11) 
yields paraboloids. For b = 0, we require 
pWa2 = constant. According to (lOa) this yields 
the trivial similar solution S, = constant, or 
6, = 0 if we require the same formal initial 
condition as for other cases. Therefore, for 
b = 0, we return to (9) to derive solutions. The 
case of b = 0 corresponds to isothermal cylinders 
or to bodies of the shape a2 - l/p,(x). 

The surface-mass-transfer variation required 
for similarity follows directly from (lob). 

t Briefly, defining 

and s = 
5 

=_-k dx, 
0 pWu,a2 

the differential equation (2) becomes 

I?-“+ [$(I +-$[:d+“]‘=O, 

where primes denote total differentiation with respect 
to 7, J = - d(b)f(O) and ci = f’(7). 
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FIG. 3. Variation of parameters for constant pressure 
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G 

and pmaz = 
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a-Present theory p,aL = const.; 

J = !? = const.; ,I I 0. 
*‘vi 

b-Probstein and Elliot [S] CfRea for Me-+ 0; 
,‘e = pw; flow along cylinder. 

c-Present theory cf_!2; J = 2. 
p,,. 

d-Present theory G; J = 2. 
e-Present theory G; / = 0. 

f-Present theory ,;b$ ; .I == 2. 

For the case h = 0 and J = constant, the 
differential equation (9), utilizing the profile (7) 
can be solved readily for G(s). Results for J = 0 
and for J = 2 (for which G = 0) are given in 
Fig. 3 for the complete range of S/a. In this 
figure the values obtained here for the thickness 
parameter G(s), momentum thickness B/p,@ 
and friction coefficient c,Re,/p, are compared 
with the incompressible results of Glauert and 

g-Flat plate j& ; J = 0. 
w 

h-Flat plate CfReT; J = 0. 
pw 

i -Glauert-Lighthill [4] 0 incompressible flow along 
cylinder. 

j -Glauert-Lighthill [4] C,Re, incompressible flow 
along cylinder. 

k-Present theory ‘;:‘: J = 0. 

I -Present theory ,Gz; J = 0. 
I 

Lighthill [4] and of Probstein and Elliot [5] for 
cylinder flow. For isothermal surfaces, the 
corresponding heat-transfer results can readily 
be obtained for Pr = 1, i.e. 

qW/rW = (H, - &We. (12) 

The present compressible results are in close 
agreement with the cited incompressible results. 
Ref. [12] gives a further comparison of some 
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numerical values which indicate the satisfactory of the variation of G. Thus the velocity profile 
accuracy of the integral method with regard to assumes the form fi@, N), as indicated by (8), 
momentum thickness and skin friction in the and i&, = 2 + A/6. For (1 = constant, the 
limiting cases s/a < 1 and 8/a $ 1. indicated profile is a similar one. 

In the special constant-pressure case, for For low-speed, constant-fluid-property flow 
which p,a2 = constant and for which J-t 2 so over a cylinder (a = constant) the solution is 
that C: -+ 0, a similar solution with the following especially simple, since (5) and (6~) may be 
relatively simple results is obtained : combined to yield an equation in G alone, i.e. 

8 = (36/630)G (13a) 

s = (37/630)((G/2) - In [l + (G/2)]) (13b) 
G $ = K,(A) + GK&‘l) 

c$e,lt%, = 8lG (13c) 

1s = 2N - 2N3 + N4. (13d) 

The profile (13d) in terms of the transformed 

[J = 2; A, a, p and I_L are constant]. 

where 

(14a) 

variable N is reduced to the usual form for thin 
isobaric boundary layers. The same result should 
be obtainable by direct transformation of the 
differential equations. In this case the explicit 
effects of viscous thickening are counter- 
balanced by injection. 

K,“‘=2(2+~!~~) -(2+6;/8)4A (14b) 

K,(A) = 2G/0 = 4/ j; ti(1 - ~7) dN. (14~) 

The effects of various parameters in the zero- 
pressure-gradient case with p,u2 = constant are 
illustrated in Fig. 3. For zero injection (J = O), 
the momentum-thickness and skin-friction para- 
meters are larger than their corresponding 
thin boundary-layer values. The parameter 
9/pwa2 varies from 0*6862/s, when the viscous 
layer is much smaller than the body radius 
(6 < a), to 2s, when the viscous layer is much 
larger than the body radius (6 $ a). Analo- 
gously, c&,lPW varies from 0.686/4s to 
4/ln (4s). The effect of transverse curvature is 
the main reason for these trends. An investiga- 
tion of the velocity distribution in the viscous 
layer at several stations shows that this curva- 
ture acts to augment the effect of a favorable 
streamwise pressure gradient. This, at least, 
accounts for the additional increase in the skin- 
friction parameter. These trends have been more 
fully discussed in [l-5]. 

Equations (14) indicate that G < 1, G2 21 
2K,s (disregarding additive constants), whereas, 
for G $ 1, G N K,s. Correspondingly (6~) 
indicates that, for G (< 1, u, N sw N xWIU+l 
where w = 2A/K,; whereas, for G%l, 
u, - e-R/.s u 1 - Q/s where Sz = 4A/Ki, and 
s - Q In s N s 2: (v/a2)x. The skin-friction 
coefficient is given by the relation 

= (27,/p&:) (y:aj/i,. = ~CN,/G (15) 

which here takes the form 

c,Re,l& = ‘2 +: (4/G). 
! 1 

(16) 
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R&m&--Les auteurs utilisent la methode integrale pour rechercher les effets de la compressibilite, du 
transfert de chaleur, du transport de masse et du gradient de pression dans les couches limites de corps 
de revolution, l’epaisseur de la couche limite n’etant pas necessairement petite devant le rayon du 
corps. Les resultats pour un gradient de pression nul sans transport de masse sont compares a ceux 
d’autres chercheurs, dans le cas oh la vitesse est petite et dans le cas d’une surface adiabatique. Ces 
ecoulements n’ont pas, en general, des profifs semblabies. Les auteurs ont Ctudie un cas particulier de 
gradient de pression nul avec transport de masse qui conduit A une solution semblabte. 11s ont trouve 
les conditions particulieres qui m&tent a des profils semblables pour des ecoulements avec, et sans, 

gradient de pression et transport de masse. 

Zusammenfassung-Mit Hilfe der Integralmethode werden die Einfliisse der Kompressibillitit, des 
W&me- und Stofftibergangs und des Langsdruckgradienten in der Grenzschicht schlanker Dreh- 
k&per untersucht. Dabei muss die Grenzschichtdicke im Vergleich zum Korperradius nicht mehr 
klein sein. Die Ergebnisse fiir den Druck~adienten Null ohne Stoff~~rgang werden mit denen anderer 
Forscher bei kleinen Geschw~ndigkejten-und adiabater Oberflache verglichen. Derartige Stromungen 
ergeben gewohnlich nicht-lhnliche Profile. Eine “Lhnliche” Losung liefert ein Sonderfall mit dem 
Druckgradienten Null und Stoffaustausch; er ist gelost. Fur Stromungen mit und ohne Druckgradient 

und Stoffilbergang ergeben sich unter speziellen Bedingungen ahnliche Profile. 

AaaoTa~n~-McnonbsosaR rlH’mrpa31bHbm XeTO& &Xo HCCJIe~OBaHfffi BJIHffEl&k CHEUWzleMOCTA, 
nepefr0c.a Temra, nepenoca vaccbr ri rpaznenra ~aenerimt Ha o~paao3aH~e norpaH~~qnor0 
CJmR 5’ He6OJIbIiiPfX TeJI Bpau&eHIuI IfpH OT~~CTB~~~ 0rpa~~~eH~~ 6 * a.gaeTcR ~pa~~~e~f~fe 

pe3ynbTaToB _~ixff fiyjreBor0 rpaxnenTa fiasnewffl npn OTCyTCTBWf neperroca MaCCbI C 

pe3ynbTaTaMn, IIOJyVeHHbIMEf Apyl-nMEi wxxefioBaTeJIHxff AJIH cnyqaes MaJIbIX CKopocTelr II 

aqzfa6aTwfewotlr IIOBepXHOCTEf. IIplr BTOM B OTJIIiLSlie OT 06bFIHbIX CJIyqaeB C HefIO~O6HbIMl'f 

npo~wux~sf B paccMaTpffsaehfonI cnysae nonywro~c~ noao6ar~e perrreakf~. ~~JIR Te~IeHnii 

npsf Hadwfffxfn OTC~TCTBHII rpaC[MeaToerran.?efIwn 1% nepeHoca ~accbI sbfse;~efihr cneq5fanbHbw 


